Sparse variable noisy PCA using l0 penalty

نویسندگان

  • Magnus O. Ulfarsson
  • Victor Solo
چکیده

Sparse principal component analysis combines the idea of sparsity with principal component analysis (PCA). There are two kinds of sparse PCA; sparse loading PCA (slPCA) which keeps all the variables but zeroes out some of their loadings; and sparse variable PCA (svPCA) which removes whole variables by simultaneously zeroing out all the loadings on some variables. In this paper we propose a model based svPCA method based on the l0 penalty. We compare the detection performance of the proposed method with other subset selection method using a simulated data set. Additionally, we apply the method on a real high dimensional functional magnetic resonance imaging (fMRI) data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse loading noisy PCA using an l0 penalty

In this paper we present a novel model based sparse principal component analysis method based on the l0 penalty. We develop an estimation method based on the generalized EM algorithm and iterative hard thresholding and an associated model selection method based on Bayesian information criterion (BIC). The method is compared to a previous sparse PCA method using both simulated data and DNA micro...

متن کامل

Rejoinder: One-step Sparse Estimates in Nonconcave Penalized Likelihood Models By

Most traditional variable selection criteria, such as the AIC and the BIC, are (or are asymptotically equivalent to) the penalized likelihood with the L0 penalty, namely, pλ(|β|) = 2λI (|β| = 0), and with appropriate values of λ (Fan and Li [7]). In general, the optimization of the L0-penalized likelihood function via exhaustive search over all subset models is an NP-hard computational problem....

متن کامل

0 Sparse Inverse Covariance Estimation

Recently, there has been focus on penalized loglikelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting “norm” is the non-convex l0 penalty but its lack ...

متن کامل

A Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI

INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...

متن کامل

A Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI

INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010